
Hidden Markov Modeling of I/O Patterns1

• Each file is broken up into segments (blocks)
• Each segment is a state
• Transitions represent events, such as read of a

single block
• Parallel access patterns require overlap in time

and space
– Nodes should access similar file segments at

similar times in order to be considered related
• Detects repeated accesses

– Useful for caching
• Determines workload changes dynamically

– Useful for automatically changing storage policies

• Ex: HMM for sequential read of a file with
possibility of skipping block 2

1 Tara M. Madhyastha and Daniel A. Reed. Input/output access pattern
classification using hidden Markov models. In Proceedings of I/O in Parallel
and Distributed Systems (IOPADS ‘97), pages 57-67, November 1997.

Rosie Wacha
Darrell Long

Measuring I/O Performance in Scalable File Systems

Motivation
• I/O workloads are essential to storage research

– Measure utility of new algorithms and designs
– Highlight real performance problem areas
– Benchmarks can focus on artificial workload types

• Real applications can’t be released
– Proprietary algorithms
– Require certain hardware
– Can’t run in many programming environments

• Want to understand application workloads more
generally
– How would an application run on a different

system?
– Can we classify applications into classes based

on I/O workload?
– Distinguish between system and workload

characteristics

HMM with Wait States
• Add waiting time for I/O and other time as additional states

in the model

• Ex: Use Poisson distribution to model time between I/O
events’ start times

File1
Segment1

Poi(dur)

Constant

Poi(comp)

Constant

File1
Segment2

other blocks or
wait states …

other blocks or
wait states …

duration of
I/O (waiting
for storage
system)

computation
wait time
before next
I/O request is
issued

Hidden Markov Model (HMM)
• HMM is a set of states with transition

probabilities
• Some states are observable from data whereas

others are hidden
• Applications in speech recognition and

bioinformatics

Synthetic Parallel Application
• Mimic the user I/O of a single run of a real

parallel application in a C++ program
• Translate original program’s system calls into

events
• Sort events by time and treat as independent
• Parallel program: events with conditionals

specifying which node performs each event
• Ignore non-user I/O (such as loading libraries)

• Ex: Read, then write, executed from node i

Block
0

Block
1

Block
2

Block
3

Read 1 Read 2 Read 3

Read 3

Prediction
• Predict performance of this workload on a different

storage system
– Upgraded storage system might process I/O more

quickly, thus reducing I/O bottlenecks
– Specify system characteristics in the workload

• Predict future accesses within a workload
– Use established I/O prediction techniques, based on

knowledge of prior accesses

Conclusion
• Benchmarking a storage system requires great

understanding of typical I/O workloads
• Using real I/O workloads can produce better synthetic

workloads to use as benchmarks
I/O events

t1, i, read…
t2, i, write…

SPA

if (node i)
sleep(time t2-t1)
write(…) Acknowledgements

• Funded by ISSDM and a GAANN fellowship
• Thanks to Storage Systems Research Center and Los

Alamos National Laboratory

